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Effective-Hamiltonian theory for electrons in deformed 
crystals: 111. Wavepacket dynamics in externally 
applied magnetic fields 

M A Oldfield and R A Brown 
School of Mathematics, Physics, Computing and Electronics, Macquarie University, New 
South Wales 2109, Australia 

Received 13 May 1988, in final form 23 August 1988 

Abstract. A formalism for an effective-Hamiltonian description of electron dynamics in 
inhomogeneously distorted crystal lattices which was recently developed by Brown in 1983 
and Brown and Oldfield in 1988 is extended to include the effects of an externally applied 
magnetic field with slow spatial variation. Spatially averaged distortion-modified operators 
for velocity and acceleration are derived for wavepackets constructed from suitably defined 
Wannier functions and simplified expressions appropriate to the small-wavevector approxi- 
mation are presented for these operators. The formalism is well suited to applications 
concerning the effects of lattice defects on magnetic orbits and magnetotransport properties. 

1. Introduction 

Effective-Hamiltonian techniques were initially developed to describe conduction elec- 
tron dynamics in perfect crystals. These methods allow a shift of attention from rapidly 
oscillating total wavefunctions to the slowly varying envelope or ‘modulating function’ 
(MF). Through the use of effective-mass parameters, they allow a free-electron-type 
description of electron dynamics in a crystal subject to external fields. Such a description 
is valid provided that the width of the wavepacket being studied is much larger than the 
lattice constant (Ashcroft and Mermin 1976) and provided that the fields are sensibly 
constant across the packet. 

It has been shown (Brown 1983, Brown and Oldfield 1988, hereafter referred to as 
I and 11, respectively) that effective-Hamiltonian methods can be applied to distorted 
crystals by expressing electron wavepackets as linear combinations of Wannier functions 
matching the local distortion. Extension of this formalism to include externally applied 
electromagnetic fields is desirable, thereby permitting application to galvanomagnetic, 
thermodynamic and transport phenomena in deformed crystals. 

The case of an electric field is straightforward (simply add its potential to the deform- 
ation potential of I and 11) and will not be further discussed. Several workers (see, e.g., 
Peierls 1933, Adams 1952, Luttinger and Kohn 1955, Wannier 1962, Kohn 1959, Blount 
1962a, b ,  Roth 1962, 1966, Wannier and Fredkin 1962, Zak 1968, 1969, 1972) have 
developed effective-Hamiltonian formalisms which incorporate magnetic fields. None 
of these can be applied to inhomogeneously strained crystals, as is readily seen by 
comparing their zero-field limit with the strain-dependent effective Hamiltonian of I 
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and I1 or of Rardeen and Shockley (1950). Although the methods used by the above 
researchers in studying magnetic fields are rather complex, they all confirm the basic 
correctness of the analysis of Luttinger (1951), at least for magnetic fields which vary 
sufficiently slowly in space. It is the aim of this paper to include magnetic field effects in 
the strained crystal formulation of I and 11. We follow Luttinger (1951) and assume, as 
in 11, that the distortions and their gradients are small, so that only linear terms in the 
distortion tensor p and its first derivative f i ’  need to be retained. We show in Q 2 that, 
as might be expected. the effective Hamiltonian in the presence of a magnetic field is 
obtained by replacing occurrences of the momentum operatorp = -ihV by an operator 
P = p - qA containing the vector potential A of the magnetic field. In D 3, we consider 
the form of the effective Hamiltonian and other dynamical operators in the small- 
wavevector approximation. The results are summarised and discussed in § 4. 

2. The effective Hamiltonian in the presence of a magnetic field 

The results of this section rely heavily on those of 11, to which frequent reference will be 
made. The notation used in I1 will be adopted here without further comment. Changes 
in the effective Hamiltonian for a charge q result from the inclusion in the one-electron 
Hamiltonian 

H = (1/2m)[-ihV - qA(r)]* + V(r)  (2.1) 
of the vector potential A ( r )  of the magnetic field. Operators which do not contain the 
one-electron Hamiltonian are clearly unchanged by magnetic field terms. Thus Dip,, (11, 
(2.41)) and f,,,, (11, (2.30)) and the parameters W,Tfnq, Wnanrq and Y,,,, (11, (2.31)-(2.33)) 
remain as defined in 11. Furthermore, the formal definitions of qnfln (11, (2.47)) and H,,,,, 
(11, (2.58)) can be retained, if the one-electron Hamiltonian implicit in the definitions 
is modified as indicated by (2.1). 

Evaluating the operator (cf 11, (2.58)) 

one encounters products of the type qnm,(R”, t R , , R )  GmJnJ(R’, t R , R , , )  where R ,  R’ and R” are 
atomic site vectors of the distorted lattice, and tR”R is the distance between atomic sites 
in the distorted lattice, i.e. = R - RI‘. Here, as in 11, we use the short-hand notation 
t = t R ‘ R .  Since Cmnn8(R’, t R , R , , )  is proportional to the distortion gradients, it is necessary to 
consider only the zeroth-order terms of qnmr(R”, t R f , R )  in such products, i.e. to first order, 

qnm, (R”, t ~ a )  Cmcn, ( R ’ ,  t R ’ R ” )  = (i a:* ( r  - R’I)Hhom (0)a;t ( r  - R )  d 3 r  Cm,,, (R’ , ~ R ‘ R J , )  

(2.3) 
i 

where U:(. - R )  is a Wannier function of the nth band of the undistorted lattice, centred 
at atomic site R and Hhom(eR) is the one-electron Hamiltonian (2.1) for a lattice which 
has homogeneous distortion e, and has the same orientation as that unit cell in the 
inhomogeneously distorted lattice which contains R .  

If an externally applied magnetic field varies sufficiently slowly that it can be con- 
sidered constant over the range Ro of the Wannier functions (Ro is of the order of the 
lattice constant, as discussed in 11) and has a magnitude small compared with h/eRi 
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(Teichler 1974) (note that our R ,  corresponds to Teichler's d )  then, for arbitrary M,(R')  
(Luttinger 1951), 

1 0  t o  

where we have defined operators (operating on the MFS) 

2 f$hom(eR,)Un(T - R ' ;  eR , )M, (R' )  = 2 U, ( r  - R ' ;  eR,)E,(PR, /h ;  eR,)M,(R') (2.4) 

p R ,  = -ihV,, (2.5) 
PR' = P R '  - qA(R' )  (2.6) 

and E,(k; eR, )  is the nth band dispersion relation for the lattice with homogeneous 
distortion e R ' .  The summation in (2.4) is, alternatively, over all lattice site vectorsR' of 
the homogeneously deformed crystal since, for a fixed reference atom at R ,  there is one- 
to-one correspondence between the to and the R ' .  Using (2.4) in (2.3) and invoking the 
orthogonality of the Wannier functions allows us to write 

As a result, (2.2) can be written to first order (cf 11, (2.59)) as 

H,,,,, = 42 [ q , , , ( ~ ' ,  t") + q z n t ( ~ ,  - to)] - $ [ E O , ( P , ,  / h ;  e R 8 )  
t o  

+ Ei , (PR,  /h ;  f?R , ) ]  2 [c,',(R', t o )  + cf8(R, -to)].  (2.8) 
t o  

The matrix elements of the one-electron Hamiltonian between Wannier functions of a 
homogeneously deformed crystal are 

g, [T( t"$ , , ) ,  e R , ]  = 1 a,*(r  - R';  eR, )Hhom(eR, )an(r  - R ;  e R , )  d 3 r  (2.9) 

where T = R - R' is a lattice vector of the homogeneously deformed lattice. If (2.9) 
is multiplied by exp(-iT- k ) ,  where k is any wavevector and summed over R (or, 
equivalently, t o )  an analysis similar to that of Luttinger (1951) leads to the equation 

2 ~ , [ T ( t o ,  p R 8 ) ;  eR'] exp(-iT. k )  = E ,  k - - A ( R ' ) ;  e . , ) .  (2.10) 
t(' ( K  

8x3 " I d  ( ; 1 
The complex conjugate of the Fourier transform of (2.10) is 

g , * [ T ( - t O , p R , ) ; e R , ]  =- 3 k E ,  k - - A ( R ' ) ; e R *  exp(-iT.k) (2.11) 

where the integration is over the Brillouin zone of the homogeneously deformed crystal. 
The validity of (2.11) allows the analysis in Appendix 3 in I1 to be repeated, merely 
replacing En(k; eR,) by E,(k - (q /h )A(R' ) ;  eR8)  throughout. 

Following 11, we define the normalisation factor 
%(R' )  = 1/[1 + O(R' ) ]  

fin,, = 9 1/*fin,,9 -1/2 

A, = 9 1 / 2 M , .  

where O(R')  is the dilation at R ' .  We define a new operator 

which operates on normalised modulating functions 

(2.12) 

(2.13) 

(2.14) 
Finally, by making the replacement -iVR, = k ,  we can write the effective Hamiltonian 



In (2.15)-(2.18) we have replaced R' by r ,  since the MFS are now to be treated as 
continuous functions. The parameters Vn'nq, Vnflniq and have an explicit spatial 
dependence when a magnetic field is present. It will be seen that, except in the exponen- 
tial term in h,',, the effective Hamiltonian in the presence of a magnetic field is obtained 
by replacing all occurrences of p in the zero-field Hamiltonian by P .  

3. Effective Hamiltonian and dynamical operators in the small-wavevector approxi- 
mation 

As was done in I and 11, the form of the effective Hamiltonian and the corresponding 
dynamical oprators will now be presented in the simplified form appropriate to the small- 
wavevector dispersion relation (cf Hunter and Nabarro 1953): 

En@, e )  = CnO + (1/2mn)K!:)pip, 

K!:) = aYfl)eL, + 6,(1 + y @ ) O  + ,u(")e ( U )  1 

(3.1) 

(3 .2)  

with 

where there is no summation over the parenthetical indices. 
In the calculations which follow, the explicit form of operator elements containing 

derivatives of the distortion will be largely ignored. Although in principle they may be 
calculated, their expression is complicated, conveying little physical insight. They are of 
little importance compared with terms in the distortion tensor itself. 

Since K p )  = Kj:), no further symmetrisation due to the non-commutation of p and 
A is necessary when evaluating expressions of the type (2.16), etc, using (3.1). The 
dispersion relation in the presence of a magnetic field is thus 

with K p )  as given in (3.2). After substitution of this expression into (2.16), it is not 
difficult to show that 

with knZn as in (2.17). 

E,(P/h) = C,O + (1 /2m,)Kp)P,P,  (3.3) 

= S,, ,[C,,O(r) + ( I / ~ ~ ~ ) P , K ~ ) P , ]  + L , . , ( P , A )  (3.4) 
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Using the expressions presented in I1 for the spatially averaged position (11, (4 .21) )  
and for the time derivative of an operator (11, (4 .11) ) ,  the velocity operator cor- 
responding to the effective Hamiltonian (3.4) is 

( f i P l n j n  = 8 n J n ( ~ / 2 m , ) ( ~ 4 ~ $ )  + K$)P,) + aLnJn /app .  (3.5) 
Before discussing the probability current density and the acceleration operator, we 
remark briefly on Hamilton’s equations in relation to the effective Hamiltonian. By 
defining a canonical momentum operatorp,,, as in I1 (11, (4 .37) )  it is easy to show that 
Hamilton’s equations (cf 11, (4.36) and (4 .38) )  are satisfied by the effective Hamiltonian 
(3.4).  It should be noted that in the presence of a magnetic field there are contributions 
to both of Hamilton’s equations from terms off diagonal in the band indices, as these 
terms are not independent of position if A(r) # 0. 

At this point, we introduce a notation for that part of the velocity operator which is 
strictly diagonal in the band indices: 

V r )  = (1 /2mn) (  P,K$) + K$)P,). ( 3  3 6 )  
In 11, we showed that a spatially averaged probability current density satisfying the usual 
continuity relation (cf 11, (4 .24) )  exists for a general effective Hamiltonian. In the 
interests of brevity, we omit from the expressions presented here the part of the current 
density which is non-diagonal in the band indices. Then it is easy to show that 

.ip = 42 M,* V/:)M, + CC + O(0’) (3.7) 
n 

which, on using (3 .6) ,  becomes 

In the case of zero distortion, (3.8) reduces to the usual distortion-free expression for 
probability current density in a magnetic field (see e.g. Landau and Lifshitz 1958). 

The acceleration, given by the commutator of the effective Hamiltonian (3.4) and 
the velocity (3 .5) ,  is, to first order in distortions and distortion gradients, 

( 6 q ) n ’ n  = a n , n [ - ( c n / m n ) @ , i  + (1/m$)(K$!m - iKt?.q)PiPm + (q/2m)Ejmi 
x ( B j K $ j V k )  + V C ) K $ ) B i ) ]  + (1/2ihm,)[(ah,,,/ap,)PiPi 
- 2hn,,P,] - (1/2ihm,,)[PiPi(ah,,,/ap,) - 2P,hn,,]. (3 .9)  

To obtain (3 .9 ) ,  we have used the definition of the vector potential 
B = V X A  (3.10) 

to write the commutator between the components of P as 

[Pi, Pi] = ihqEijk B k  (3.11) 
where qjk is the completely anti-symmetric unit tensor of third order. If distortion 
gradients are sufficiently small, the third term in (3.9) will dominate, as it is proportional 
to the distortions themselves. In the case of homogeneous distortion the acceleration is 
given by 

(3.12) 
which reduces further, for zero distortion, to the form obtained using conventional 
effective-Hamiltonian theory applied to perfect crystals, 

(dq) , , ,  = 6.,,(q/2mn)(B x V p )  - V p )  X B )  V f )  = ( 1 / 2 m n ) ( p  - qA). (3.13) 

(6q)n ,n  = G, , , (q /2m)e imi (B ,K~)Vk)  + V $ ) K ( f l j B j )  4‘ 

where 
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4. Summary and conclusion 

We have shown in § 0 2 and 3 how the effective-Hamiltonian formalism developed in I 
and I1 can be extended to include the effects of an externally applied magnetic field. 
The modified effective Hamiltonian (2.15)-(2.18) controls the evolution of modulating 
functions (2.14) through a Schrodinger-like equation of type 11, (4.7). 

Incorporation of the effects of magnetic fields into the effective-Hamiltonian descrip- 
tion of inhomogeneously distorted crystals opens the way to several applications. Of 
particular interest is the failure of the magnetoresistance of simple metals to saturate at 
high magnetic fields. It follows from the present formalism (Brown 1988) that dislo- 
cations, even in crystals with closed Fermi surfaces, produce real-space orbits which are 
not closed. Suchorbits lead to anon-saturation of high-fieldmagnetoresistance (Ashcroft 
and Mermin 1976, pp 236239) and the formalism presented here provides a means of 
investigating this phenomenon. 
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